Designated Engineering Representative FAA Conference 2006

Managing Aircraft Structural Safety Margins

Lessons Learned Derived From Helicopter and Fixed Wing Accident Reports

Philip G. Potts
Chief System Engineer
Safety / Airworthiness

Thesis: Fleet Management Paradigms

The Aviation Industry Operates to a Standard Mission

Mission Profiles are not formally monitored or evaluated for impact on Operational Risk or Fleet Safety, long term

Visual Crack Detection Validates Airworthiness

Airframe Fatigue Crack Detection Expectations are Incompatible with Helicopter Dynamic Systems Fatigue Life Management

Operators and Maintainers Manage Airworthiness

- No one fleet stakeholder maintains complete knowledge of various fleet Missions and their safety impact
 - Industry Stakeholders Include: Operators, Pilots, Maintenance, Original Equipment Manufacturers (OEM), and Regulatory agencies
- Developing Mission Efficiencies is an adversarial business process

Accident Investigation Review

Fixed Wing Aircraft and Rotorcraft Reports

NTSB Aerial Fire Fighting: Assessing Safety and Effectiveness

- > Harsh Mission Environment Dominates Mishap Causes
- Fatigue of Primary Structure Caused Aircraft Mishaps

NASA Civil Rotorcraft Accident Report

- -1963 through 1997 / Twin Turbine
- Mechanical Failures Dominated Mishap Causes
- Fatigue of Primary Dynamic System Structure is a Significant Cause of Rotorcraft Mishaps

May 25, 2006

Aerial Fire Fighting - Heavy Transport NTSB Accident Causal Summary

Mission Loads

'The severity of the maneuver loads experienced by airplanes involved in firefighting operations' 'exceeded both the maneuver limit and ultimate load factors'

Mission Spectrum

'These repeated and high-magnitude maneuvers and the repeated exposure to a turbulent environment hasten the initiation of fatigue cracking and increase the growth rate of cracking once it exists.'

Airworthiness

'...fatigue cracking and accelerated crack propagation can and should be addressed through maintenance programs.'

Conclusion:

'...no effective mechanism currently exists to ensure the continuing airworthiness of these firefighting aircraft.'

US Civil Rotorcraft - Twin Turbine Fleet NASA Accident Causal Summary

Mission Spectrum

'Past design standards are inadequate relative to the many new and varied activities'

Mission Loads

'Pilots did exceed design limits'

Airworthiness

- 'required and timely maintenance was skipped'
- '...less than thorough inspections were performed,'

Conclusion:

'The current fleet appears, broadly speaking, to be underdesigned in view of today's commercial usage'

Accident Reports - Conclusions

Mission - Structural Characterizations

Helicopter: 'Underdesigned'

Firefighting: 'subjected to more severe operating environment than its original usage'

Airworthiness - Process Weakness

'Inadequate maintenance procedures to detect fatigue cracking'

Stakeholder Capability - Inadequate

Operators 'did not possess engineering expertise' 'to monitor' Mission load conditions and 'predict the effects of those stresses on the operational life of the airplanes'

Implied Industry ParadigmsDerived From Report Conclusions

- The Aviation Industry Operates to a Standard / Certified Mission
 - Loading is Known and Repeatable
- Aircraft Airworthiness Depends upon Crack Detection
 - Inspection Intervals and Methods Reasonable
- Operators and Maintainers Manage Fleet Airworthiness and Safety Risk
 - Each Stakeholder is Capable of Evaluating Safety Risks of Varied Mission Conditions

Implied Industry ParadigmsOperating to a Standard Mission

MINOR'S Cumulative Damage Theory

- 1. Measured Flight Loads
 - [Projected Against]
- 2. Material Strength of the Component
 - [Establish Load Cycle Thresholds in:]
- 3. Frequency and Duration for Individual Flight Loads

Implied Industry Paradigms Operating to a Standard Mission

- **Certified Mission Characteristics Include:**
 - **Load** Magnitude, **Spectrum** [Frequency of Load], Component **Strength**
- **Fatigue Sensitive Conditions Include:**
 - Dynamic or Static Loads that Exceed Design Limitations
 - Spectrum Operations that Exceed Certified Mission Spectrum Frequency
 - Environmental Conditions that Degrade Material Strength
- **Fatigue Margins of Safety**
 - OEM methodologies develop operational reliability of much better than 1 in 1,000,000 failure likelihood
 - Methods include: Structural Fatigue and Static Analysis, Subcomponent Tests, Full Scale Structural Testing, Full Scale System Flight Tests
- Firefighting Mission Introduced a More Severe Fatigue Environment
 - A Transport OEM Monitored and Evaluated the Fire Fighting Mission on Airframe Service Life
 - Results equal '5 to 7 times more severe than Passenger Service'
- **Study Findings:**

Operations that Alter Original Certified Mission Load, Spectrum, or Strength;

Reduce Structural Safety Margins and Increase Operational Risks, long term **Designated Engineering Representative**

FAA Conference 2006

Implied Industry Paradigm

Airworthiness - Maintenance Crack Detection

Standard <u>Airframe</u> Paradigm –

- Crack Development is Accepted in Multi-load path structure
- Visual inspection is accepted as a Standard means to Determine Airworthiness
- Inspection Procedures and Maintenance Intervals derive from Standard Mission Profiles

Standard <u>Helicopter</u> Dynamic System Paradigm

- No Cracks are permitted in Monolithic structure
- Recommended Retirement Times (RRT) are the Standard Airworthiness Practice
- Fatigue Calculations Derived from Standard Mission Profiles

Study Findings:

the 'Airframe Inspection Paradigm' is <u>not</u> a practical or safe method to ensure Helicopter dynamic system Airworthiness

Implied Industry Paradigm Managing Fleet Airworthiness / Safety Risk

• Airworthiness Paradigm:

- Pilots Operate Aircraft Within Limits
- OEM / FAA Certify Mission Spectrum
- Owners Operate Within Mission Standards
- Maintenance Follows Inspection Intervals For Standard Mission
- Regulatory Agencies Verify Operations To Mission Standards
- Then: Safety Risks are Managed

Implied Industry Paradigm Managing Fleet Airworthiness / Safety Risk

Study Findings:

- Aircraft Conditions are ever changing due to Mission requirements
- Potential Safety Process Gaps
 - Every Industry Stakeholder / Process Owner is Responsible to Manage a portion of the Safety Risk
 - Yet, No One Stakeholder is Fully Informed and Capable to Manage Every Airworthiness Issue and Safety Risk

Industry Processes and Expectations

Fundamental Process Gaps

Process Gap Conclusion

Conclusion:

Stakeholders are not Fully Knowledgeable about Fundamental Safety Risks caused by Unique or Repeated Operations that Exceed Original Mission Design Parameters

However, This Does Not imply that Stakeholders are:

- Disinterested In Safety
- Not Knowledgeable of Structural Issues
- Or Unwilling to Eliminate Accident Causes

Closing the Process Gaps

Stakeholder Communication Limitations

- Certification or Mission Standards are not always followed.
- Maintenance Inspection Procedures Not Directly Tied to Unique Mission Conditions
- Some Operators not Able to Achieve Optimum Operational Safety due to Limited Technical Awareness of Mission Characteristics
- Availability of Technical Information for Unique Missions is Limited
- Piloting Awareness to Safely Operate Aircraft During Missions
- Fundamental Understanding of Mission Operational Conditions is Lacking Within and Between the Helicopter Fleet Stakeholders

Study Recommendations Introduce Mission Based Management

- Data Measurement Leads to Mission Awareness
 - Safety Risks to Structural Margins Identified During Mission Development by Owner / Operators
- Automated Measurement Systems are Available to Monitor Threshold and Load Exceedances
 - Digital Engine Controls Function as Threshold Monitoring
- Maintenance and Pilot Techniques May be Adjusted to Manage Fleet Airworthiness
 - A Monitoring System Benefits Fleet Efficiencies
- Measurement of Dynamic System Vibration and Temperatures for Shafting, Bearings, and Airframe
 - Historically, 29 % of Helicopter Accidents are Structural

Published Accident Reports Detail Data Summary

NASA Civil Rotorcraft Accident Report –1963 through 1997 / Twin Turbine

Airplane Firefighting Mission Measurements

- Certified Limit and Ultimate Loads were Regularly Exceeded
- An Airframe Manufacturer Analyzed a '5 to 7 Time' Usage Acceleration during Firefighting

Civil Rotorcraft Accidents Distribution

- Dynamic System Mechanical Failure Rate
 - OF 302 Total Twin Turbine Accidents
 - (29%) 89 Dynamic System +(13%) 39 Engine
 - Fatigue is 42% of the 'Cause' Total
- The Mishap Rate for the Tail Drive System is Equivalent to Single Turbine Accidents, on a percentage basis

Helicopter Accident Data Civil Twin Turbine Helicopter

Mechanical Failures Represent 42% of Fleet Accidents

> (29%) 89 Dynamic System +(13%) 39 Engine

TABLE 31. TWIN-TURBINE ACCIDENT DISTRIBUTION, LAST 5 YEARS VS. 1963–1997

1992–1997		997	Last 34 years		
NTSB category	Count	%	Count	%	
Loss of engine power	14	10	39	13	
In flight collision with object	19	13	43	14	
Loss of control	21	15	40	13	
Airframe/component/system failure or malfunction	39	27	89	29	
Hard landing	3	2	8	3	
In flight collision with terrain/water	11	8	16	5	
Rollover/nose over	1	1	4	1	
Other	35	25	63	21	
Total	143	100	302	100	

Helicopter Accident Data Civil Twin Turbine Helicopter

Fatigue represents 37 % of Dynamic System Failures

TABLE 34. NTSB FAILURE MODE/SYSTEM MATRIX—TWIN-TURBINE HELICOPTERS

Failure mode	Drive system	Rotor system	Control system	Airframe LG	Total
Fatigue	13	13	4	3	33
Improper assembly, installation, maintenance	3	1	7	3	14
Material failure	3	2	2	0	7
Undetermined/not reported	1	4	1	1	7
Failed	1	3	2	0	6
Separated	5	0	0	0	5
Foreign object damage	1	4	0	0	5
Overload	2	0	0	2	4
Pilot action/operational issue	1	1	0	1	3
Lack of lubrication	1	0	1	0	2

ISSUE: 'The current fleet appears ... to be underdesigned in view of today's commercial usage.'

Total	32	29	18	10	89
-------	----	----	----	----	----